A Panoramic View on Neurodegeneration, Its Connection with Microbiota and Its Therapeutics
DOI:
https://doi.org/10.32628/IJSRST25126403Keywords:
Neurodegeneration, Parkinsonism, Alzheimer's disease, Gut brain axis, antioxidantsAbstract
Neurodegenerative diseases are becoming one of the leading causes of death globally and silently affecting the society. The major cause of neurodegeneration is accumulation of free radicals and reactive oxygen species that can induces cellular events of mitochondrial damage, activation of other necrotic cascades that results into neuronal death. One of the underlying causes of this accumulation is aging and reduced antioxidants in the body as well as the novel finding suggests that imbalance in Gut Brain Axis (GBA) is the major cause. Microbial gut flora plays an important role in balancing these free radicals as well as neural homeostasis. Due to aging and other causes this axis is damaged resulting into failure in repair mechanism against the neuronal death. Current therapy for neurodegeneration fails to treat the condition and only managing the symptoms because the therapy is intended for symptomatic cure only. Recent advances in therapy of neurodegeneration involves the repairing of system from root cause, by the means of gene therapy, immunomodulation, anti-oxidants therapy, balancing gut microbiota which can balance the Gut Brain Axis and thus can helpful to control several conditions, use of novel drug delivery system to improve the effectiveness of available treatments like nano-gel, nano-suspension, hydrogels, etc.
Downloads
References
Parkinson’s Disease in 204 Countries/Territories From 1990 to 2019. Front. Public Heal. (2021) 9, 776847. https://doi.org/10.3389/FPUBH.2021.776847/FULL.
Gadhave, D., Gupta, A., Khot, S., Tagalpallewar, A., Kokare, C., Nose-to-brain delivery of paliperidone palmitate poloxamer-guar gum nanogel: Formulation, optimization and pharmacological studies in rats. Ann. Pharm. Françaises (2023) 81, 315–333. https://doi.org/10.1016/J.PHARMA.2022.08.010. DOI: https://doi.org/10.1016/j.pharma.2022.08.010
Niazi, S.K., Non-Invasive Drug Delivery across the Blood–Brain Barrier: A Prospective Analysis. Pharmaceutics 15. https://doi.org/10.3390/PHARMACEUTICS15112599. DOI: https://doi.org/10.3390/pharmaceutics15112599
Olufunmilayo, E.O., Gerke-Duncan, M.B., Holsinger, R.M.D., Oxidative Stress and Antioxidants in Neurodegenerative Disorders, 2023, Vol. 12, 517 12 Antioxidants 517. https://doi.org/10.3390/ANTIOX12020517 DOI: https://doi.org/10.3390/antiox12020517
Sayre, L.M., Perry, G., Smith, M.A.,. Oxidative stress and neurotoxicity. Chem. Res. Toxicol. 21, 172–188. 2008 https://doi.org/10.1021/TX700210J/ASSET/IMAGES/LARGE/TX-2007-00210J_0001.JPEG DOI: https://doi.org/10.1021/tx700210j
Singh, A., Kukreti, R., Saso, L., Kukreti, S., Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules 24. 2019 https://doi.org/10.3390/MOLECULES24081583. DOI: https://doi.org/10.3390/molecules24081583
Ashraf, GM et al., Protein misfolding and aggregation in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol. Disord. Drug Targets 13, 1280. https://doi.org/10.2174/1871527313666140917095514. DOI: https://doi.org/10.2174/1871527313666140917095514
Khanam, H., Ali, A., Asif, M., Shamsuzzaman, Neurodegenerative diseases linked to misfolded proteins and their therapeutic approaches: A review. Eur. J. Med. Chem. (2016) 124, 1121–1141. https://doi.org/10.1016/J.EJMECH.2016.08.006. DOI: https://doi.org/10.1016/j.ejmech.2016.08.006
T¨onnies, E., Trushina, E., Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. J. Alzheimer’S. Dis. (2017) 57, 1105. https://doi.org/10.3233/JAD-161088. DOI: https://doi.org/10.3233/JAD-161088
Ahmad MA et al, Neuro-inflammation: a potential risk for dementia. Int. J. Mol. Sci. (2022) 23. https://doi.org/10.3390/IJMS23020616. DOI: https://doi.org/10.3390/ijms23020616
Ransohoff, RM et al. Neuroinflammation: Ways in Which the Immune System Affects the Brain. Neurotherapeutics (2015) 12, 896. https://doi.org/10.1007/S13311-015-0385-3. DOI: https://doi.org/10.1007/s13311-015-0385-3
Goldmann T et al, A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation, 2013 1611 Nat. Neurosci. 16, 1618–1626. https://doi.org/10.1038/nn.3531. DOI: https://doi.org/10.1038/nn.3531
Triantafyllakou, I., Clemente, N., Khetavat, R.K., Dianzani, U., Tselios, T., Development of PLGA Nanoparticles with a Glycosylated Myelin Oligodendrocyte Glycoprotein Epitope (MOG35-55) against Experimental Autoimmune Encephalomyelitis (EAE). Mol. Pharm. (2022) 19, 3795–3805. https://doi.org/10.1021/ACS.MOLPHARMACEUT.2C00277. DOI: https://doi.org/10.1021/acs.molpharmaceut.2c00277
Erdo F et al, Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res. Bull. (2018) 143, 155–170. https://doi.org/10.1016/J.BRAINRESBULL.2018.10.009. DOI: https://doi.org/10.1016/j.brainresbull.2018.10.009
Lamptey, R.N.L., Chaulagain, B., Trivedi, R., Gothwal, A., Layek, B., Singh, J., A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. Int. J. Mol. Sci. 2022b. 23 https://doi.org/10.3390/IJMS23031851. DOI: https://doi.org/10.3390/ijms23031851
Ow, S.Y., Dunstan, D.E., A brief overview of amyloids and Alzheimer’s disease. Protein Sci. 2014. 23, 1315–1331. https://doi.org/10.1002/PRO.2524. DOI: https://doi.org/10.1002/pro.2524
Breijyeh, Z., Karaman, R., Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules 2020. 25. https://doi.org/10.3390/MOLECULES25245789. DOI: https://doi.org/10.3390/molecules25245789
Hogan, DB et al., Diagnosis and treatment of dementia: 5. Nonpharmacologic and pharmacologic therapy for mild to moderate dementia. CMAJ 2008. 179, 1019–1026. https://doi.org/10.1503/CMAJ.081103. DOI: https://doi.org/10.1503/cmaj.081103
Gepshtein, S., Li, X., Snider, J., Plank, M., Lee, D., Poizner, H., Dopamine function and the efficiency of human movement. J. Cogn. Neurosci. 2014. 26, 645–657. https://doi.org/10.1162/JOCN_A_00503. DOI: https://doi.org/10.1162/jocn_a_00503
Khatri, D.K., Choudhary, M., Sood, A., Singh, S.B., Anxiety: An ignored aspect of Parkinson’s disease lacking attention. Biomed. Pharmacother. 2020. 131, 110776 https://doi.org/10.1016/J.BIOPHA.2020.110776. DOI: https://doi.org/10.1016/j.biopha.2020.110776
JC, G., RA, B., The Differential Diagnosis of Parkinson’s Disease. Neurology 2018. 43, S1–S11. https://doi.org/10.15586/CODONPUBLICATIONS. PARKINSONS DISEASE. 2018. CH6.
Kulisevsky, J., Pharmacological management of Parkinson’s disease motor symptoms: update and recommendations from an expert. S1–S10 Rev. Neurol. 2022. 75. https://doi.org/10.33588/RN.75S04.2022217. DOI: https://doi.org/10.33588/rn.75S04.2022217
Mack, J., Marsh, L., Parkinson’s Disease: Cognitive Impairment. Focus (Am. Psychiatr. Publ. ). 2017. 15, 42–54. https://doi.org/10.1176/APPI.FOCUS.20160043. DOI: https://doi.org/10.1176/appi.focus.20160043
Jankovic, J., Aguilar, L.G., Current approaches to the treatment of Parkinson’s disease. Neuropsychiatr. Dis. Treat. 2008. 4, 743–757. https://doi.org/10.2147/NDT.S2006. DOI: https://doi.org/10.2147/NDT.S2006
Coles, A., Newer therapies for multiple sclerosis. Ann. Indian Acad. Neurol. 2015. 18, S30–S34. https://doi.org/10.4103/0972-2327.164824. DOI: https://doi.org/10.4103/0972-2327.164824
Klineova, S., Lublin, F.D., Clinical Course of Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2018. 8 https://doi.org/10.1101/CSHPERSPECT.A028928. DOI: https://doi.org/10.1101/cshperspect.a028928
Sugandhi, V.V et al., Pharmacokinetics of vitamin dosage forms: A complete overview. Food Sci. Nutr. 2024. 12, 48–83. https://doi.org/10.1002/FSN3.3787. DOI: https://doi.org/10.1002/fsn3.3787
Eva, L et al., A Comprehensive Review on Neuroimmunology: Insights from Multiple Sclerosis to Future Therapeutic Developments. Biomedicines 2023 11. https://doi.org/10.3390/BIOMEDICINES11092489. DOI: https://doi.org/10.3390/biomedicines11092489
Dargahi, N., Katsara, M., Tselios, T., Androutsou, M.E., De Courten, M., Matsoukas, J., Apostolopoulos, V., 2017. Multiple sclerosis: immunopathology and treatment update. Brain Sci. 7 https://doi.org/10.3390/BRAINSCI7070078. DOI: https://doi.org/10.3390/brainsci7070078
Roos, R.A.C., Huntington’s disease: A clinical review. Orphanet J. Rare Dis. 2010. 5, 1–8. https://doi.org/10.1186/1750-1172-5-40/TABLES/5. DOI: https://doi.org/10.1186/1750-1172-5-40
Schulte, J., Littleton, J.T., The biological function of the Huntingtin protein and its relevance to Huntington’s Disease pathology. Curr. Trends Neurol. 2011. 5, 65–78.
Saudou, F., Humbert, S., The Biology of Huntingtin. Neuron 2016. 89, 910–926. https://doi.org/10.1016/J.NEURON.2016.02.003. DOI: https://doi.org/10.1016/j.neuron.2016.02.003
Schneider, S.A., Bird, T., Huntington’s Disease, Huntington’s Disease Look-Alikes↱, and Benign Hereditary Chorea: What’s New? Mov. Disord. Clin. Pract. 2016. 3, 342–354. https://doi.org/10.1002/MDC3.12312. DOI: https://doi.org/10.1002/mdc3.12312
McGarry, A et al., Additional Safety and Exploratory Efficacy Data at 48 and 60 Months from Open-HART, an Open-Label Extension Study of Pridopidine in Huntington Disease. J. Huntingt. Dis. 2020. 9, 173–184. https://doi.org/10.3233/JHD-190393. DOI: https://doi.org/10.3233/JHD-190393
Zarei, S. et al., A comprehensive review of amyotrophic lateral sclerosis. Surg. Neurol. Int. 2015. 6 https://doi.org/10.4103/2152-7806.169561. DOI: https://doi.org/10.4103/2152-7806.169561
Masrori, P., Damme, P.Van, Amyotrophic lateral sclerosis: a clinical review 2020. 1918–1929. https://doi.org/10.1111/ene.14393 DOI: https://doi.org/10.1111/ene.14393
Rg, M., Jd, M., Dh, M., Rg, M., Jd, M., Dh, M., Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND) 2012. DOI: https://doi.org/10.1002/14651858.CD001447.pub3
Neupane, P. et al, Investigating Edaravone Use for Management of Amyotrophic Lateral Sclerosis (ALS): A Narrative Review. Cureus 15. 2023. https://doi.org/10.7759/CUREUS.33746. DOI: https://doi.org/10.7759/cureus.33746
Hogden, A., Foley, G., Henderson, R.D., James, N., Aoun, S.M., Amyotrophic lateral sclerosis: improving care with a multidisciplinary approach. J. Multidiscip. Healthc. 2017. 10, 205–215. https://doi.org/10.2147/JMDH.S134992. DOI: https://doi.org/10.2147/JMDH.S134992
Thursby, E.; Juge, N. Introduction to the Human Gut Microbiota. Biochem. J, 2017., 474, 1823–1836. DOI: https://doi.org/10.1042/BCJ20160510
Cho, I.; Blaser, M.J. The Human Microbiome: At the Interface of Health and Disease. Nat. Rev. Genet. 2012, 13, 260–270. DOI: https://doi.org/10.1038/nrg3182
Yatsunenko, T. et al., Human Gut Microbiome Viewed across Age and Geography. Nature 2012, 486, 222–227. DOI: https://doi.org/10.1038/nature11053
Hills, R.D.; Pontefract, B.A.; Mishcon, H.R.; Black, C.A.; Sutton, S.C.; Theberge, C.R. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients 2019, 11, 1613. DOI: https://doi.org/10.3390/nu11071613
Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversityof the Human Intestinal Microbial Flora. Science 2005, 308, 1635–1638. DOI: https://doi.org/10.1126/science.1110591
Suganya, K.; Koo, B.S. Gut-Brain Axis: Role of Gut Microbiota on Neurological Disorders and How Probiotics/Prebiotics Beneficially Modulate Microbial and Immune Pathways to Improve Brain Functions. Int. J. Mol. Sci. 2020, 21, 7551. DOI: https://doi.org/10.3390/ijms21207551
Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The Gut-Brain Axis: Interactions between Enteric Microbiota, Central and Enteric Nervous Systems. Ann. Gastroenterol. 2015, 28, 203–209.
Collins, S.M.; Surette, M.; Bercik, P. The Interplay between the Intestinal Microbiota and the Brain. Nat. Rev. Microbiol. 2012, 10, 735–742. DOI: https://doi.org/10.1038/nrmicro2876
Zhu, S.; Jiang, Y.; Xu, K.; Cui, M.; Ye,W.; Zhao, G.; Jin, L.; Chen, X. The Progress of Gut Microbiome Research Related to Brain Disorders. J. Neuroinflamm. 2020, 17, 25. DOI: https://doi.org/10.1186/s12974-020-1705-z
Ghaisas, S.; Maher, J.; Kanthasamy, A. Gut Microbiome in Health and Disease: Linking the Microbiome-Gut-Brain Axis and Environmental Factors in the Pathogenesis of Systemic and Neurodegenerative Diseases. Pharmacol. Ther. 2016, 158, 52–62. DOI: https://doi.org/10.1016/j.pharmthera.2015.11.012
Hoban, A.E.; Stilling, R.M.; Ryan, F.J.; Shanahan, F.; Dinan, T.G.; Claesson, M.J.; Clarke, G.; Cryan, J.F. Regulation of Prefrontal Cortex Myelination by the Microbiota. Transl. Psychiatry 2016, 6, e774. DOI: https://doi.org/10.1038/tp.2016.42
Tran, S.M.S.; Hasan Mohajeri, M. The Role of Gut Bacterial Metabolites in Brain Development, Aging and Disease. Nutrients 2021, 13, 732. DOI: https://doi.org/10.3390/nu13030732
Furness, J.B.; Callaghan, B.P.; Rivera, L.R.; Cho, H.J. The Enteric Nervous System and Gastrointestinal Innervation: Integrated Local and Central Control. Adv. Exp. Med. Biol. 2014, 817, 39–71. DOI: https://doi.org/10.1007/978-1-4939-0897-4_3
Nezami, B.G.; Srinivasan, S. Enteric Nervous System in the Small Intestine: Pathophysiology and Clinical Implications. Curr. Gastroenterol. Rep. 2010, 12, 358–365. DOI: https://doi.org/10.1007/s11894-010-0129-9
Fleming, M.A.; Ehsan, L.; Moore, S.R.; Levin, D.E. The Enteric Nervous System and Its Emerging Role as a Therapeutic Target. Gastroenterol. Res. Pract. 2020, 8024171. DOI: https://doi.org/10.20944/preprints202006.0135.v1
Ma, Q.; Xing, C.; Long,W.;Wang, H.Y.; Liu, Q.;Wang, R.F. Impact of Microbiota on Central Nervous System and Neurological Diseases: The Gut-Brain Axis. J. Neuroinflamm. 2019, 16, 53. DOI: https://doi.org/10.1186/s12974-019-1434-3
Tang, H.; Chen, X.; Huang, S.; Yin, G.;Wang, X.; Shen, G. Targeting the Gut–Microbiota–Brain Axis in Irritable Bowel Disease to Improve Cognitive Function—Recent Knowledge and Emerging Therapeutic Opportunities. Rev. Neurosci. 2023. DOI: https://doi.org/10.1515/revneuro-2022-0155
Jain, T.; Li, Y.-M. Gut Microbes Modulate Neurodegeneration. Science (1979) 2023, 379, 142–143. DOI: https://doi.org/10.1126/science.adf9548
Gulliver, E.L.; Young, R.B.; Chonwerawong, M.; D’Adamo, G.L.; Thomason, T.; Widdop, J.T.; Rutten, E.L.; Rossetto Marcelino, V.; Bryant, R.V.; Costello, S.P.; et al. Review Article: The Future of Microbiome-Based Therapeutics. Aliment. Pharmacol. Ther. 2022, 56, 192–208. DOI: https://doi.org/10.1111/apt.17049
Misra, S.; Mohanty, D. Psychobiotics: A New Approach for Treating Mental Illness? Crit. Rev. Food Sci. Nutr. 2019, 59, 1230–1236. DOI: https://doi.org/10.1080/10408398.2017.1399860
Saulnier, D.M.; Ringel, Y.; Heyman, M.B.; Foster, J.A.; Bercik, P.; Shulman, R.J.; Versalovic, J.; Verdu, E.; Dinan, T.G.; Hecht, G.; et al. The Intestinal Microbiome, Probiotics and Prebiotics in Neuro-gastroenterology. Gut Microbes 2013, 4, 17–27. DOI: https://doi.org/10.4161/gmic.22973
Gowing, G., Svendsen, S., Svendsen, C.N., 2017. Ex vivo gene therapy for the treatment of neurological disorders. Prog. Brain Res. 230, 99–132. https://doi.org/10.1016/BS.PBR.2016.11.003. DOI: https://doi.org/10.1016/bs.pbr.2016.11.003
Savi´c, N., Schwank, G., 2016. Advances in therapeutic CRISPR/Cas9 genome editing. Transl. Res. 168, 15–21. https://doi.org/10.1016/J.TRSL.2015.09.008. DOI: https://doi.org/10.1016/j.trsl.2015.09.008
Ling, Q., Herstine, J.A., Bradbury, A., Gray, S.J., 2023. AAV-based in vivo gene therapy for neurological disorders. Nat. Rev. Drug Discov. 22, 789–806. https://doi.org/10.1038/S41573-023-00766-7. DOI: https://doi.org/10.1038/s41573-023-00766-7
Mortada, I., Farah, R., Nabha, S., Ojcius, D.M., Fares, Y., Almawi, W.Y., Sadier, N.S., 2021. Immunotherapies for Neurodegenerative Diseases. Front. Neurol. 12, 654739 https://doi.org/10.3389/FNEUR.2021.654739/BIBTEX.
Shin, J., Kim, H.J., Jeon, B., Immunotherapy Targeting Neurodegenerative Proteinopathies: α-Synucleinopathies and Tauopathies. J. Mov. Disord. 2020. 13, 11. https://doi.org/10.14802/JMD.19057. DOI: https://doi.org/10.14802/jmd.19057
Valera, E., Masliah, E., Immunotherapy for neurodegenerative diseases: focus on α synucleino-pathies. Pharmacol. Ther. 2013. 138, 311–322. https://doi.org/10.1016/J.PHARMTHERA.2013.01.013. DOI: https://doi.org/10.1016/j.pharmthera.2013.01.013
Hoque, M., Samanta, A., Alam, S.S.M., Zughaibi, T.A., Kamal, M.A., Tabrez, S., Nanomedicine-based immunotherapy for Alzheimer’s disease. Neurosci. Biobehav. Rev. 2023. 144 https://doi.org/10.1016/J.NEUBIOREV.2022.104973. DOI: https://doi.org/10.1016/j.neubiorev.2022.104973
Mortada, I., Farah, R., Nabha, S., Ojcius, D.M., Fares, Y., Almawi, W.Y., Sadier, N.S., Immunotherapies for Neurodegenerative Diseases. Front. Neurol. 2021. 12, 654739 https://doi.org/10.3389/FNEUR.2021.654739/BIBTEX. DOI: https://doi.org/10.3389/fneur.2021.654739
Weihofen, A. et al., Development of an aggregate-selective, human-derived α-synuclein antibody BIIB054 that ameliorates disease phenotypes in Parkinson’s disease models. Neurobiol. Dis. 2019. 124, 276–288. https://doi.org/10.1016/J.NBD.2018.10.016. DOI: https://doi.org/10.1016/j.nbd.2018.10.016
Imran, M et al., Exploring the Remarkable Chemotherapeutic Potential of Polyphenolic Antioxidants in Battling Various Forms of Cancer, 28, 3475 Mol 2023 Vol. 28, 3475. https://doi.org/10.3390/MOLECULES28083475. DOI: https://doi.org/10.3390/molecules28083475
Stratakis, E., Novel Biomaterials for Tissue Engineering 2018, 2018, Vol. 19, 3960 19 Int. J. Mol. Sci. 3960. https://doi.org/10.3390/IJMS19123960. DOI: https://doi.org/10.3390/ijms19123960
Bordoni, M., Scarian, E., Rey, F., Gagliardi, S., Carelli, S., Pansarasa, O., Cereda, C., Biomaterials in neurodegenerative disorders: a promising therapeutic approach. Int. J. Mol. Sci. 2020b 21 https://doi.org/10.3390/IJMS21093243. DOI: https://doi.org/10.3390/ijms21093243
Eleftheriadou, D., Kesidou, D., Moura, F., Felli, E., Song, W., 2020. Redox-responsive nanobiomaterials-based therapeutics for neurodegenerative diseases. Small 16. https://doi.org/10.1002/SMLL.201907308. DOI: https://doi.org/10.1002/smll.201907308
Shabani, L., Abbasi, M., Azarnew, Z., Amani, A.M., Vaez, A., Neuronanotechnology: diagnostic and therapeutic nano-based strategies in applied neuroscience, 2023 221 22, 1–41 Biomed. Eng. OnLine. https://doi.org/10.1186/S12938-022-01062-Y. DOI: https://doi.org/10.1186/s12938-022-01062-y
Schliebs,R. and Arendt T. Thecholinergic system in aging and neuronal degeneration. Behav. Brain Res. 2020b 221,555–563.doi:10.1016/j.bbr.2010.11.058 DOI: https://doi.org/10.1016/j.bbr.2010.11.058
Posadas,I.,López-Hernández,B.,andCeña,V. Nicotinicreceptors in neurodegeneration. Curr. Neuro-pharmacol (2013) 11, 298–314. doi: 10.2174/1570159X11311030005 DOI: https://doi.org/10.2174/1570159X11311030005
PuzzoD. and Arancio O Amyloid-β peptide: J. Alzheimers Dis. (2013). 33 (Suppl.1), S111–S120. doi:10.3233/JAD-2012-129033 DOI: https://doi.org/10.3233/JAD-2012-129033
Wang,H.Y. et al., Beta-Amyloid (1-42) binds to alpha 7 nicotinic acetylcholine receptor with high affinity Implications for Alzheimer’s disease pathology. J. Biol. Chem. (2000) 275, 5626–5632.doi:10.1074/jbc.275.8.5626 DOI: https://doi.org/10.1074/jbc.275.8.5626
Ranilla, L.G.; Kwon, Y.-I.; Apostolidis, E.; Shetty, K. Phenolic Compounds, Antioxidant Activity and in Vitro Inhibitory Potential against Key Enzymes Relevant for Hyperglycemia and Hypertension of Commonly Used Medicinal Plants, Herbs and Spices in Latin America. Bioresour. Technol. 2010, 101, 4676–4689. DOI: https://doi.org/10.1016/j.biortech.2010.01.093
Lopes, G.; Gomes, E.; Barbosa, M.; Bernardo, J.; Valentão, P. Camel Grass Phenolic Compounds: Targeting Inflammation and Neurologically Related Conditions. Molecules 2022, 27, 7707. DOI: https://doi.org/10.3390/molecules27227707
Lee, B.K.; Hyun, S.-W.; Jung, Y.-S. Yuzu Hesperidin Ameliorate Blood-Brain Barrier Disruption during Hypoxia via Antioxidant Activity. Antioxidants 2020, 9, 843. DOI: https://doi.org/10.3390/antiox9090843
Fox, J.H.; Connor, T.; Stiles, M.; Kama, J.; Lu, Z.; Dorsey, K.; Lieberman, G.; Sapp, E.; Cherny, R.A.; Banks, M.; et al. Cysteine Oxidation within N-Terminal Mutant Huntingtin Promotes Oligomerization and Delays Clearance of Soluble Protein. J. Biol. Chem. 2011, 286, 18320–18330. DOI: https://doi.org/10.1074/jbc.M110.199448
Bartzokis, G.; Lu, P.H.; Tishler, T.A.; Fong, S.M.; Oluwadara, B.; Finn, J.P.; Huang, D.; Bordelon, Y.; Mintz, J.; Perlman, S. Myelin Breakdown and Iron Changes in Huntington’s Disease: Pathogenesis and Treatment Implications. Neurochem. Res. 2007, 32, 1655–1664. DOI: https://doi.org/10.1007/s11064-007-9352-7
Zeb, A. Concept, Mechanism, and Applications of Phenolic Antioxidants in Foods. J. Food Biochem. 2020, 44, e13394. DOI: https://doi.org/10.1111/jfbc.13394
Zamora, R.; Hidalgo, F.J. The Triple Defensive Barrier of Phenolic Compounds against the Lipid Oxidation-Induced Damage in Food Products. Trends Food Sci. Technol. 2016, 54, 165–174. DOI: https://doi.org/10.1016/j.tifs.2016.06.006
Li, Y.; Jongberg, S.; Andersen, M.L.; Davies, M.J.; Lund, M.N. Quinone-Induced Protein Modifications: Kinetic Preference for Reaction of 1,2-Benzoquinones with Thiol Groups in Proteins. Free Radic. Biol. Med. 2016, 97, 148–157. DOI: https://doi.org/10.1016/j.freeradbiomed.2016.05.019
Downloads
Published
Issue
Section
License
Copyright (c) 2026 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0