Comparative Evaluation of AI Models for Flood Prediction: CNN and RNN Integration with Bi-LSTM

Authors

  • Brijesh Munjiyasara M.E. Intern-Ahmedabad University, Gujarat, India Author
  • Dhvani Rana M.E. Intern-PDEU University, Gandhinagar, Gujarat, India Author
  • Dhyey Patel M.E. Intern-Nirma University, Ahmedabad, Gujarat, India Author
  • Smeet Patel M.E. Intern-PDEU University, Gandhinagar, Gujarat, India Author
  • Yagnesh Vyas Project Director, BISAG-N, Gandhinagar, Gujarat, India Author
  • Vijay Singh Additional Director, BISAG-N, Gandhinagar, Gujarat, India Author
  • Ajay Patel Director, BISAG-N, Gandhinagar, Gujarat, India Author

DOI:

https://doi.org/10.32628/IJSRST251383

Keywords:

Flood Prediction, Artificial Intelligence, Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), Deep Learning, Disaster Management

Abstract

Flooding is devastating natural disaster that poses significant threats to human life, infrastructure, and economies, particularly in regions susceptible to heavy rainfall and monsoonal patterns. Accurate and timely flood prediction is crucial for effective disaster management and mitigation. This paper presents a comparative evaluation of Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks, two prominent deep learning architectures, for flood prediction. The research evaluates modeling results for different forecasting horizons for Darbhanga, Bihar. The study draws on existing literature and proposes methodology to evaluate these models using ten years of spatial-temporal historical rainfall and flood data, aiming to provide valuable insights for governance, practitioners and researchers in field of flood disaster management.

📊 Article Downloads

References

Abdi, H. (2010). Partial least squares regression and projection on latent structure regression (PLS Regression). Wiley Interdisciplinary Reviews: Computational Statistics, 2(1), 97–106. DOI: https://doi.org/10.1002/wics.51

Ahmad, T., Pandey, A. C., Kumar, A., & Tirkey, A. (2023). Understanding the role of surface runoff in potential flood inundation in the Kashmir valley, Western Himalayas. Physics and Chemistry of the Earth, Parts A/B/C, 131, 103423. DOI: https://doi.org/10.1016/j.pce.2023.103423

Ahmed, I. A., Talukdar, S., Parvez, A. S., Rihan, M., Baig, M. R. I., & Rahman, A. (2022). Flood susceptibility modeling in the urban watershed of Guwahati using improved metaheuristic-based ensemble machine learning algorithms. Geocarto International, 37(1), 1–29. DOI: https://doi.org/10.1080/10106049.2022.2066200

Al-Areeq, A. M., Abba, S. I., Yassin, M. A., Benaafi, M., Ghaleb, M., & Aljundi, I. H. (2022). Computational machine learning approach for flood susceptibility assessment integrated with remote sensing and GIS techniques from Jeddah, Saudi Arabia. Remote Sensing, 14(21), 5515. DOI: https://doi.org/10.3390/rs14215515

Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon, P., Wyser, K., & Feyen, L. (2017). Global projections of river flood risk in a warmer world. Earth’s Future, 5(2), 171–182. DOI: https://doi.org/10.1002/2016EF000485

Al-Ruzouq, R., Shanableh, A., Jena, R., Gibril, M. B. A., Hammouri, N. A., & Lamghari, F. (2024). Flood susceptibility mapping using a novel integration of multi-temporal sentinel-1 data and eXtreme deep learning model. Geoscience Frontiers, 15(3), 101780. DOI: https://doi.org/10.1016/j.gsf.2024.101780

Al-Yahyai, S., Charabi, Y., & Gastli, A. (2010). Review of the use of numerical weather prediction (NWP) models for wind energy assessment. Renewable and Sustainable Energy Reviews, 14(9), 3192–3198. DOI: https://doi.org/10.1016/j.rser.2010.07.001

Andaryani, S., Nourani, V., Haghighi, A. T., & Keesstra, S. (2021). Integration of hard and soft supervised machine learning for flood susceptibility mapping. Journal of Environmental Management, 291, 112731. DOI: https://doi.org/10.1016/j.jenvman.2021.112731

Armal, S., Porter, J. R., Lingle, B., Chu, Z., Marston, M. L., & Wing, O. E. (2020). Assessing property level economic impacts of climate in the US, new insights and evidence from a comprehensive flood risk assessment tool. Climate, 8(10), 116. DOI: https://doi.org/10.3390/cli8100116

Arnell, N. W., & Lloyd-Hughes, B. (2014). The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios. Climatic Change, 122(1-2), 127–140. DOI: https://doi.org/10.1007/s10584-013-0948-4

Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical weather prediction. Nature, 525(7567), 47–55. DOI: https://doi.org/10.1038/nature14956

Bouramtane, T., Kacimi, I., Bouramtane, K., Aziz, M., Abraham, S., Omari, K., Valles, V., Leblanc, M., Kassou, N., El Beqqali, O., et al. (2021). Multivariate analysis and machine learning approach for mapping the variability and vulnerability of urban flooding: the case of Tangier City, Morocco. Hydrology, 8(4), 182. DOI: https://doi.org/10.3390/hydrology8040182

Bui, Q.-T., Nguyen, Q.-H., Nguyen, X. L., Pham, V. D., Nguyen, H. D., & Pham, V.-M. (2019). Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping. Journal of Hydrology, 578, 124379. DOI: https://doi.org/10.1016/j.jhydrol.2019.124379

Chen, J., Huang, G., & Chen, W. (2021). Towards better flood risk management: assessing flood risk and investigating the potential mechanism based on machine learning models. Journal of Environmental Management, 293, 112810. DOI: https://doi.org/10.1016/j.jenvman.2021.112810

Chen, W., Hong, H., Li, S., Shahabi, H., Wang, Y., Wang, X., & Ahmad, B. B. (2019). Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles. Journal of Hydrology, 575, 864–873. DOI: https://doi.org/10.1016/j.jhydrol.2019.05.089

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. DOI: https://doi.org/10.1162/neco.1997.9.8.1735

Kumar, A., Singh, R., & Gupta, S. (2020). Flood prediction using LSTM networks: A case study of Bihar. Journal of Hydrology, 580, 124-135.

Li, Y., Zhang, H., & Wang, J. (2022). Hybrid deep learning model for flood prediction: Combining CNN and LSTM. Water, 14(3), 456. DOI: https://doi.org/10.3390/w14060993

Sharma, A., Kumar, P., & Singh, R. (2021). Deep learning applications in flood forecasting: A review. Environmental Modelling & Software, 143, 105-120.

Singh, P., Kumar, A., & Gupta, R. (2020). Comparative analysis of flood prediction models: LSTM vs. CNN. Journal of Flood Risk Management, 13(4), e12645.

Xing, Y., Zhang, Y., & Liu, J. (2019). ConvLSTM: A convolutional LSTM network for precipitation nowcasting. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1-10.

Zhang, Y., Wang, Y., & Li, X. (2021). A comparative study of CNN and LSTM for flood prediction. Journal of Hydrology, 598, 126-135.

Downloads

Published

09-08-2025

Issue

Section

Research Articles

How to Cite

Comparative Evaluation of AI Models for Flood Prediction: CNN and RNN Integration with Bi-LSTM. (2025). International Journal of Scientific Research in Science and Technology, 12(4), 1009-1017. https://doi.org/10.32628/IJSRST251383