Comparative Evaluation of AI Models for Flood Prediction: CNN and RNN Integration with Bi-LSTM
DOI:
https://doi.org/10.32628/IJSRST251383Keywords:
Flood Prediction, Artificial Intelligence, Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM), Deep Learning, Disaster ManagementAbstract
Flooding is devastating natural disaster that poses significant threats to human life, infrastructure, and economies, particularly in regions susceptible to heavy rainfall and monsoonal patterns. Accurate and timely flood prediction is crucial for effective disaster management and mitigation. This paper presents a comparative evaluation of Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks, two prominent deep learning architectures, for flood prediction. The research evaluates modeling results for different forecasting horizons for Darbhanga, Bihar. The study draws on existing literature and proposes methodology to evaluate these models using ten years of spatial-temporal historical rainfall and flood data, aiming to provide valuable insights for governance, practitioners and researchers in field of flood disaster management.
📊 Article Downloads
References
Abdi, H. (2010). Partial least squares regression and projection on latent structure regression (PLS Regression). Wiley Interdisciplinary Reviews: Computational Statistics, 2(1), 97–106. DOI: https://doi.org/10.1002/wics.51
Ahmad, T., Pandey, A. C., Kumar, A., & Tirkey, A. (2023). Understanding the role of surface runoff in potential flood inundation in the Kashmir valley, Western Himalayas. Physics and Chemistry of the Earth, Parts A/B/C, 131, 103423. DOI: https://doi.org/10.1016/j.pce.2023.103423
Ahmed, I. A., Talukdar, S., Parvez, A. S., Rihan, M., Baig, M. R. I., & Rahman, A. (2022). Flood susceptibility modeling in the urban watershed of Guwahati using improved metaheuristic-based ensemble machine learning algorithms. Geocarto International, 37(1), 1–29. DOI: https://doi.org/10.1080/10106049.2022.2066200
Al-Areeq, A. M., Abba, S. I., Yassin, M. A., Benaafi, M., Ghaleb, M., & Aljundi, I. H. (2022). Computational machine learning approach for flood susceptibility assessment integrated with remote sensing and GIS techniques from Jeddah, Saudi Arabia. Remote Sensing, 14(21), 5515. DOI: https://doi.org/10.3390/rs14215515
Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon, P., Wyser, K., & Feyen, L. (2017). Global projections of river flood risk in a warmer world. Earth’s Future, 5(2), 171–182. DOI: https://doi.org/10.1002/2016EF000485
Al-Ruzouq, R., Shanableh, A., Jena, R., Gibril, M. B. A., Hammouri, N. A., & Lamghari, F. (2024). Flood susceptibility mapping using a novel integration of multi-temporal sentinel-1 data and eXtreme deep learning model. Geoscience Frontiers, 15(3), 101780. DOI: https://doi.org/10.1016/j.gsf.2024.101780
Al-Yahyai, S., Charabi, Y., & Gastli, A. (2010). Review of the use of numerical weather prediction (NWP) models for wind energy assessment. Renewable and Sustainable Energy Reviews, 14(9), 3192–3198. DOI: https://doi.org/10.1016/j.rser.2010.07.001
Andaryani, S., Nourani, V., Haghighi, A. T., & Keesstra, S. (2021). Integration of hard and soft supervised machine learning for flood susceptibility mapping. Journal of Environmental Management, 291, 112731. DOI: https://doi.org/10.1016/j.jenvman.2021.112731
Armal, S., Porter, J. R., Lingle, B., Chu, Z., Marston, M. L., & Wing, O. E. (2020). Assessing property level economic impacts of climate in the US, new insights and evidence from a comprehensive flood risk assessment tool. Climate, 8(10), 116. DOI: https://doi.org/10.3390/cli8100116
Arnell, N. W., & Lloyd-Hughes, B. (2014). The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios. Climatic Change, 122(1-2), 127–140. DOI: https://doi.org/10.1007/s10584-013-0948-4
Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical weather prediction. Nature, 525(7567), 47–55. DOI: https://doi.org/10.1038/nature14956
Bouramtane, T., Kacimi, I., Bouramtane, K., Aziz, M., Abraham, S., Omari, K., Valles, V., Leblanc, M., Kassou, N., El Beqqali, O., et al. (2021). Multivariate analysis and machine learning approach for mapping the variability and vulnerability of urban flooding: the case of Tangier City, Morocco. Hydrology, 8(4), 182. DOI: https://doi.org/10.3390/hydrology8040182
Bui, Q.-T., Nguyen, Q.-H., Nguyen, X. L., Pham, V. D., Nguyen, H. D., & Pham, V.-M. (2019). Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping. Journal of Hydrology, 578, 124379. DOI: https://doi.org/10.1016/j.jhydrol.2019.124379
Chen, J., Huang, G., & Chen, W. (2021). Towards better flood risk management: assessing flood risk and investigating the potential mechanism based on machine learning models. Journal of Environmental Management, 293, 112810. DOI: https://doi.org/10.1016/j.jenvman.2021.112810
Chen, W., Hong, H., Li, S., Shahabi, H., Wang, Y., Wang, X., & Ahmad, B. B. (2019). Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles. Journal of Hydrology, 575, 864–873. DOI: https://doi.org/10.1016/j.jhydrol.2019.05.089
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. DOI: https://doi.org/10.1162/neco.1997.9.8.1735
Kumar, A., Singh, R., & Gupta, S. (2020). Flood prediction using LSTM networks: A case study of Bihar. Journal of Hydrology, 580, 124-135.
Li, Y., Zhang, H., & Wang, J. (2022). Hybrid deep learning model for flood prediction: Combining CNN and LSTM. Water, 14(3), 456. DOI: https://doi.org/10.3390/w14060993
Sharma, A., Kumar, P., & Singh, R. (2021). Deep learning applications in flood forecasting: A review. Environmental Modelling & Software, 143, 105-120.
Singh, P., Kumar, A., & Gupta, R. (2020). Comparative analysis of flood prediction models: LSTM vs. CNN. Journal of Flood Risk Management, 13(4), e12645.
Xing, Y., Zhang, Y., & Liu, J. (2019). ConvLSTM: A convolutional LSTM network for precipitation nowcasting. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1-10.
Zhang, Y., Wang, Y., & Li, X. (2021). A comparative study of CNN and LSTM for flood prediction. Journal of Hydrology, 598, 126-135.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0